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ABSTRACT

The Distributed Array Processor (DAP) manufactured by International
Computers Limited is an array of 1-bit 200-nanosecond processors. The Pilot
DAP on which the present work was done is a 32 x 32 array; the commercially
available machine is a 64 x 64 array. We show how the projected SOR algorithm
for the linear complementarity problem Aw > b, w > 0, wi(Aw - b) = 0, can be
adapted for use on the DAP when A is the 'finite-difference' matrix
corresponding to the difference approximation to the lLaplace operator.
Application is made to two linear complementarity problems arising, respec-
tively, from two-and three-dimensional porous flow free boundary problems.
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SIGNIFICANCE AND EXPLANATION

An array processor, the Distributed Array Processor manufactured by

International Computers Ldmited, has recently become available. The DAP is an

array ¢f 1-bit processors; in the production machine there are 4096 processors

arranged as a 64 x 64 array. 1t is normally programmed in an array processing

extension of Fortran.

It is of interest to develop algorithms which can efficiently use the

great computing capacity of the DAP. We ahow how the projected SOR algorithm

for the linear complementarity problem Aw > b, w > 0, wi(Aw - b) = 0 can be

adapted for use on the DAP when A is the finite-difference matrix

corresponding to the difference approximation to the Laplace operator.

Application is made to two linear complementarity problems arising,

problems.

respectively, from two and three~dimensional porous flow free boundary
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THE SOLUTION OF LINEAR COMPLEMENTARITY PROBLEMS ON AN ARRAY PROCESSOR

C. W Cryex"+1¢2, p, M. Planders*, D. J. Hunt', S. P. Reddavay®,

and J. Stansbury**'1

1. Introduction . é

An ICP (linear complementarity problem) is a problem of the form: Find a real

n-vector w = ('i) satisfying

s

f (a) Aw > b, I
] % (b) w>0, . (1.1) {
% (c) wi(Aw = b) =0 ,
F | where b = (b;) is a known real n-vector and A = (aij) is a known real n x n
matrix.

Linear complementarity problems arise in many contexts (Balinski and Cottle

[1978] ). In particular, there is a close connection between linear complementarity ¥

problems and variational inequalities (Cottle, Giannessi and Lions [1980], Cryer and

1 Dempster [1980]).

Many problems in continuum mechanics can be reformulated as variational
inequalities (Duvaut and Lions [1976], Kinderlehrer and Stampacchia [1980]), which,
when discretized, reduce to linear complementarity problems of the form (1.1) with

special features:
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1« A 1is a large matrix, perhaps of order 25,000.
2. A 1is a 'finite-difference' or 'finite-element' matrix; in particular,

A 1is sparse with a great deal of structure. (1.2)
3. A large percentage of the elements of the solution w are non-zero.

Because of these special features, the standard methods of solving linear
complementarity problems are not very efficient, and methods of solution have been
developed which take advantage of the structure of A: projected SOR (Cryer [1971],
Glowinski [1971]); modified block SOR (Cottle, Golub, and Sacher [1978] ); multigriad
projection (Brandt and Cryer [1980]); and generalizations of projected SOR
{Mangasarian [1977]). Cryer [1980] briefly surveys much of this work.

In the present paper we consider the use of the parallel computer DAP to solve
linear cqmplementarity problems with the features (1.2). The DAP (Distributed Array
Processor, manufactured by International Computers Limited), which is an SIMD array
of typically 64 x 64 processors, is described in Section 2. In Section 3 we
describe the implementation on the DAP of projected SOR to solve a linear
complementarity problem derived from a two-dimensional porous flow free boundary
problem, and in Section 4 we extend this work and solve a linear complementarity
problem derived from a three-dimensional porous flow free boundary problem. In
Section 5 we comment on possible future developments, and the overall conclusions

are in Section 6.
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2. The Pilot DAP (Distributed Array Processor)

The present work was carried out on the Pilot 32 x 32 DAP at Stevenage,

England, and we will describe this machine first. A 64 X 64 version is available,

and the minor differences between the two machines are indicated at the end of this

section.

DAP Hardware

The essential features of the Pilot DAP hardware are as follows (Flanders,

Hunt, Reddaway, and Parkingon [1977), Reddaway [1979]):

1.

2.

3.

4.

A 32 x 32 array of iduntical processing elements (PEs) with a cycle time of 200
nanoseconds.

Bach PE has a one-bit adder, 2K bits of storage, and three one-bit registers (a
general purpo#: register for accessing data and performing arithmetic; a carry
register; and an activity control register).

Each PE is connected to its four neighboring PE's (North, South, East, and
West). In a given cycle all PE's access their neighbor in the same direction
(determined by the prcgram). In addition, the PEs are linked by row and column
highways which connect together all the PEs in each row and column.

There is a master control unit (MCU) which broadcasts instructions to all the
PEs. Al)l PEs can perform the same instruction simultaneously, but certain

instructions are only effective if the activity control register is 'true',

DAP Software

A programs to run on a DAP system normally comprises a standard FORTRAN program

and a number of subroutines and functions written in an array processing extension

at FORTRAN known as DAP-FORTRAN (Flanders [1979), Gostick [1979]), ICL [1979])).

The standard FORTRAN is executed by the host computer and provides mainly

input-output and overall control. The DAP~FORTRAN is executed by the DAP and

provides high speed computation. Data is shared between them using common blocks

held in DAP store.

b
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Some features of DAP-FORTRAN are described below.

In addition to the data types of FORTRAN, DAP-FORTRAN has two new data types:

vector and matrix. With a 32 x 32 DAP a vector has 32 components and a matrix

has 32 x 32 components; the components can be real, integer, or logical.
For example, the data statements
REAL U( ), V( , ), W(,5), X(,,3),
INTEGER A(,1), B( ), C(,,4) (2.1)
LOGICAL FLAGS(,2), MASK( , )
declare U (a real vector), V (a real matrix), W (an array of 5 real
vectors), X (an array of 3 real matrices), A (an array of 1 integer vector), B
(an integer vector), C (an array of 4 .integer matrices), FLAGS (an array of 2
logical vectors), and MASK (a logical matrix).

Expressions in DAP-FORTRAN can consist of scalars, vectors, and matrices with
the usual unary and binary operations. Operations on vectors and matrices are
performed in parallel using all 32 x 32 PEs.

Operations between a scalar and a vector or a matrix cause implicit expansion
of the scalar to the necessary dimensions. For example, if M is a matrix of size

32 x 32 and S 4is a scalar, then M =M + 8§ caugses S to be implicitly expanded
to size 32 x 32 with each element being equal to 8S; then the corresponding elements
of "matrix"™ S and matrix M are added in parallel and assigned to M in parallel.

Arrays of vectors and matrices may be used to construct more complex
structures. To process a vector or matrix array requires performing calculations on
the individual vectors or matrices in the array.

Selection and updating of parts of vectors and matrices can be performed using
the powerful indexing capabilities of DAP-FORTRAN. Matrix sections can be specified
by omitting subscripts along which all elements are to be taken. Using this, whole
rows or columns can be selected from matrices. For example, M(I,) specifies the

I=-th row of matrix M.
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shift indexing is a very useful feature of DAP-FORTRAN. For example, in a
simple solution of Laplace's equation on a 32 % 32 grid we wish to replace each
element with the average of its four neighbors. This could be coded in FORTRAN as:

po 10 I = 2,31
Do 10 J = 2,31
Y(I,J) = (X(I + 1,J) + X(X -~ 1,3) + X(I,J + 1) + X(I,T~ 1)) / 4.0
10 continue
Further code would be needed to handle elements on the edges of the matrix.
The DAP-FORTRAN code is much simpler:
X = (X(+,) + X(=,) + X(,+) + X(,~)) / 4.0 . (2.1)
The term X(+,) uses shift indexing. In particular, X(+,) specifies a matrix
where the (I,J) element is the (I + 1,J) element of X, for 1< I < 32 and
1 < J < 32. Thus, X(+,) contains all the "south" neighbors of X. Edge values
(corresponding to subscripts 0 or 33) are defined to be zero. Aas an
alternative, cyclic geometry may be specified by using a GEOMETRY statement.

Longer shifts can be performed by explicit system functions; for example,
SHS(X,I) shifts the matrix X I positions to the south. Note that since all the
updating is performed simultaneously, it is not necessary to write the results to
another matrix.

lLogical matrices and vectors can be used to select elements from an array. For
example, if we wished to update only certain elements of X in statement (2.1), we
could set the corresponding elements of IM, a logical matrix, to true and all
other elements of LM to false. That is, if X(I,J) is to contain the average of
its four neighbors, then LM(I,J) is set to true. Otherwise, LM(I,J) is false.
Then the following statement performs the required task:

X(1M) = (X(+,) + X(=,) + X(,+) + X(,~)) / 4.0 .




DAP-FORTRAN has a number of useful system functions whose arguments and results
may be scalars, vectors, or matrices. The ALTC, ALTR, MERGE, MAX, and ABS func-
tions will be briefly described since these are used in the programs in this paper.

The functions ALTC and ALTR return logical matrices. If C is the
argument to ALTC, then the first C columns of the result matrix are set to
false, the next C columns to true, the next C columns to false, etc. ALTR
performs similarly for rows.

The function MAX (now named MAXV) returns a scalar equal to the largest
number in its vector or matrix argument. The function ABS returns a vector or
matrix containing the absolute value of every element in its argument.

The function MERGE takes three arguments and returns a matrix. The first two
arguments are matrices (or implicitly expanded scalars) and the third argument is a
logical matrix. If the (I,J) element of the logical matrix is true then the
(I,J3) element of the result matrix is set equal to the (I,J) element of the first
matrix; otherwise, it is set equal to the (I,J) element of the second matrix.

Examples of DAP-FORTRAN programs are given in Sections 3 and 4, and the
Appendices.

DAP Arithmetic

When a DAP-FORTRAN program is executed by the DAP, expressions involving only
scalars are executed sequentially, but operations on vectors and matrices are

performed in parallel by the PEs.

The DAP memory can be visualized as a cuboid, with 2K horizontal planes, each

plane being a 32 x 32 square of bits. The 32 x 32 array of PEs lies on top of the
cube, and each column of 2K bits belongs to the PE above it.
Two storage modes are used in DAP-FORTRAN: vertical and horizontal. Scalars
and vectors are stored in horizontal mode while matrices are held in vertical mode.
In vertical mode, each number is held entirely within the store of one PE with

successive bits in successive store locations. Thus, for an integer matrix, the
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sign bit of every element in the matrix would be held in the game store address of
each PE.

In horizontal mode, a number is spread along a row of PEs. Thus, a scalar
occupies one row while a vector occupies 32 rows. ‘DAP instructions are also stored
in this format.

All arithmetic is carried out using subroutines. Some operation times for 32
bit numbers are given in Table 2.1.

It will be noted that vector arithmetic is faster than matrix arithmetic. This
is because a row of PEs are available for each vector component, while only one PE
is available for each matrix component.

some of the quoted computation times are data dependent. In particular, matrix
multiplication by a scalar typically varies from 170us to 200us depending upon
the distribution of zeros in the binary representation of the constant; for special

scalars such as .5 or 3 the multiplication time can be as low as 60us.

Operation Matrix Vector Scalar
floating point addition 140-180us 54us 27us
floating point multiplication 315us S50us 34us
floating point multiplication 60~-200us 40ps -

by a scalar
One shift of a real matrix, 15us 2us -
e.ge X(+,).
Move a floating point matrix 15us 2us 2us
logical AND 2us 2us 2us
logical mask 1us 2us -

Note: Times are slightly different on production DAPs.

Table 2.1. Average DAP-FORTRAN arithmetic times for the Pilot DAP.
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Host-DAP Interface

The sequence of operations for compiling and running DAP programs is as

follows.

(a)

(b)

(c)

The host computer compiles the host FORTRAN program and the DAP-FORTRAN
subroutines into host and DAP machine codes respectively.

DAP machine code, incorporating all necessary low level subroutines, is loaded
into DAP memory in horizontal mode where it occupies a few bits of each PE's
memory. Host machine code is loaded into the host memory.

Execution begins in the host and control is transferred to the DAP as required
by subroutine calls. On completion of DAP processing the host resumes

execution at the point following the call.

Detailed information on the Pilot DAP relevant to understanding the programs in

this paper is given in Appendix A.

The Production DAP

The current production DAP is generally similar to the Pilot but differs as

follows:

(a)
{b)

(c)

(d)

there are 4096 PEs arranged in a 64 x 64 array;
each PE has 4K bits of memory;

arithmetic operations differ somewhat in timing but are overall a little

fagter;

coupling between host and DAP is more direct so the interface is simpler than

indicated in Appendix A.




SN0 57 ot Sk 2 e s

3. Numerical solution of a tw.-dimensional free boundary problem

The flow of water through a porous dam is a well-known model problem. Water
seeps from a reservoir of height H through a rectangular dam of width L to a
regervoir of height h. Part of the dam is saturated and the remainder of the dam
is dry. The wet and dry regions are separated by an unknown free boundary I which

must be found as part of the solution.

Fz(L.H)

SEEPAGE

e
i

—_——— X

L77777777777/777777,
B8=10,00 CsiL, 0

FIG. 3.1. Flow through a porous rectanqular dam R.

As shown by Baiocchi [1972] the problem can be formulated as follows: Find
u on the rectangle R = ABCF such that
2
(a) -V"u > -1, on R,
(b) u>0, on R,

(c) u(-Vzu +1) =0, on R,

( 2
(H - y)°/2 on AB ,

(h - y)2/2 on oD,

u-g-l

(H2(L - x) + h®x]/2L, on BC ,

| 0, on DFA .
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The wet region of the dam consists of the points where u > 0 and the dry region
consists of the points where u = 0,

When the problem (3.1), (3.2) is approximated using the classical five point
difference approximation for the Laplace operator, one obtains an LCP of the form
(1.1), where the matrix A and right hand side b are the same as those that would
be obtained if the Dirichlet problem

720 =-1, on R,
(3.3)
u=g, on R,
were approximated by the finite difference equation Aw = b; More precisely, let an
M x N grid with gridlength Ax be superimposed upon R, and let the values of
u and g at the point ([j - 1]4x,[i - 11Ax) Dbe denoted by uy5 and 9557
respectively, for 1 < i <M and 1 < j < N. Then (1.1) takes the form

(a) 4w -w 2 -(Ax)2

15 7 Yie1,3 T Yie1,3 T Vi, T Vi, 90
for 1 <i< M, 1<j<N,

(b) wij >0, for 1 <1i<M 1< J<N, (3.4)
2
(¢c) wij(4wij T Vi1, 5 T Yie1,5 T Yi,441 T Wi, 51 (Ax)“) =0 ,

for 1< i <M 1<3j<N,

(d) Wig = 9340 for ((3j = 1)Ax,(i - 1)Ax) € 3R .

We discuss below two iterative methods for solving (3.4): the projected Jacobi
method and the projected SOR method. The projected Jacobi method is much slower
than the projected SOR method, but is trivial to implement on the DAP and serves as
a useful introduction to DAP programminge.

The projected Jacobi method

Let w(O) = (wig)) be an initial guegs for the solution w = (“ij) of
(3.4). One generates a sequence of approximations w(k) - (wig)), k= 1,2,000,

-10-
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(k) (k) (k) (k) (k) 2
(a) Zig T Yin,9 Yt Vi, Vi, gm0 Y Vi, ge T 8%
e+ %) _ (k)
(b) iy 245 /4 ,
(k+1) _ (x+ %)
(c) "ij max(o,vij ) . (3.5)
for 1 <i<M and 1< J <N
(k+1)
(d) wij gij' for ((3 - 1)Ax,(i - 1)4x) € IR .

It is known that the projected Jacobi method will converge (Mangasarian (1977]).
If M < 32 and N < 32 then the gridpoints can be regarded as a subset of
a 32 x 32 array, and one PE can be associated with each gridpoint. Defining w(k),

w(k+’) and z(k) as real DAP-FORTRAN matrices, the computation (3.5) is trivial to

implement on the DAP.
In Figure 3.2 we list a DAP subroutine JACOBI which solves the dam problem for

and Ax = 1. This subroutine could be

the case h =0, H=31, L =31, M=N = 32,
called by a host program, which could then print the answers in the matrix W.

Using the operation times given in Table 2.1 we can readily estimate the time

required per iteration in the main loop of the JACOBI subroutine (see Figure 3.3).

-11=
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SUBROUTINE JACOBI

LOGICAL MASK( , ), WSIGN( ,

REAL W( , ) , 2( , )

REAL  INDEX( )
EQUIVALENCE (W,WSIGN)
HEIGHT = 31.0

WIDTH = 31.0

DO 10 I = 1,32
INDEX(I) = (32 - I)/31.0
CONTINUE.

W=0

TEMP = HEIGHT*HEIGHT*.5

W(1, ) = TEMP * INDEX

w( ,1) = TEMP * INDEX * INDEX

MASK = .TRUE.
MASK(1, ) = .FALSE.
MASK(32, ) = JFALSE.
MASK( ,1) = +FALSE.
MASK( ,32) = .FALSE.
Do 50 1 =1, 100

Z2 =W+, ) + W(=,) + W ,+)
+ W( "') - 1-0

W(MASK) = ,25%*Z
CONTINUE

END

FIG.

)

3.2,

Declare logical 32 x 32 matrices, MASK and
WSIGN

Declare real floating point 32 x 32 matrices
W and 2

Declare a real floating point 32-vector INDEX.
Declare the logical matrix WSIGN equivalent to
the first bit, the sign bit, of the matrix W.

Initialize INDEX vector.

Clear matrix W

Set values of the matrix
on bottom (BC).

W equal to g

Set values of the matrix
on left (AB).

W equal to g

Set the matrix MASK to be true at interior
points and false at boundary points.

Start of main loop

Sum neighbors and store in 2 matrix.

Transfer average to W at interior points.

Project by setting W = 0 at points where
MASK is true and the sign of W 1is negative.

The DAP subroutine JACOBI.

-12~




Statement

Z =W+, )+ W(~, )+ W ,+)
+ W( ,-) - 1-0

W(MASK) = ,25*2

W(MASK .AND. WSIGN) = 0.0

Do 50 I = 1,100

Operations Time (us)
4 floating point matrix

additions/subtractions 640
4 index shifts 60
1 scalar-matrix assignment 15

1 £floating point matrix multipli-
cation by a special constant 70
1 logical mask 1
1 logical AND 2
1 logical mask 1
1 scalar-matrix assignment 15
7
811

FIG. 3.3. Estimated computation time for the main loop of JACOBI.

From Figure 3.3 we see that one projected Jacobi iteration over the whole

32 x 32 grid requires 811us.

The projected SOR method

(0 _ (00,

(3.6)

Let w i3 be an initial guess for the solution w = (wij) of
(3.4). In the usual implementation of projected SOR one generates a sequence of
approximations w(k) = wig) as follows:

(k) _ (k+1) (k) (k+1) (k) _ 2
(a) 2130 T Yaet,3 P Vaer,g T Ve e Y Vg0 T B
(k+ Y5) _ (k) (k) _ ,. (k)

(b) wij wij + w(zij 4w1j Y/ 4,

- (k) _ (k)

(w/4)zij + (1 m)wij ’
(k1) (kt 14)

(c) iy max{o,vij },

for 1 <i<KM and 1< j <N,

where ®w 1is a constant, the over-relaxation parameter.




It is known that the iteration (3.6) converges for all initial guesses wl®)
iff 0 < w < 2 (Cryer (19711, Glowinski [1971]).

The implementation (3.6) is not suitable for parallel computation because the

(k+1) (k+1) and '(k+1)

new values w 1-1,9 1,3-1

cannot be computed simultaneously: w must be

(k+1)
13

However, there is a simple but ingenious way of making SOR suitable for

known before w can be computed.

parallel computation. In the implementation (3.6), we order the gridpoints by rows
and columns (Figure 3.4a). Instead, let us visualize the gridpoints as forming a

red-black chess board and number first the red points and then the black points

(Figure 3.4b).

13 14 15 16 sl @

9 10 11 12 G m e 09

"
[+ ]
~
®

(0 ® B @©
Tt 2 3 a4 @@@

(a) Usual (v) Rred () ana slack []

FIG., 3.4. Orderings of gridpoints (for a 4 x 4 grid).

Applying projected SOR to the points numbered as in Figure 3.4(b) we find that
each projected SOR iteration can be broken down into two stages: in the red(first)
stage projected SOR is applied to the red points; and in the black(second) stage

projected SOR is applied to the black points:

-{d=

Lt

‘o v

S

Pe—

~
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Red Stage
(x,red) _ _(k,black) (x,black) (k,black) (k,black) _ 2
% (a) %43 Yier,3 T Vie1,3 V4,40 + vy, 4= (ax)™ ,
(et 15 ,red) _ (k,red) - o)yl XiTed)
(b) ':L,j (m/cn’.j + (1 w)v“ v (3.7)
' (k+1,red) _ (x+ 14 ,red)
(c) i3 nnx{o,wi'j } .
Black stage
(k,black) _ _(k+1,red) (x+1,red) (k+1,red) (k+1,red) _ 2
(a) 54 Yi+1, * Vi1, L3t YLt (ax)~
1
(b) wik-t /A .black) _ (W‘)'(k.bhck) + (1 - u)'(k,blcck) , (3.8)
b 13 13
1
(e) 'i:'."lobIICk) - ux{o"i:* b ,bhek)) .

Each stage can be carried out in parallel, with the red(black) processors
working and the black(red) processors idle.

This idea of using the red-black ordering for parallel proceasors has appeared
several times in the literature (Heller {1978]). 1Its use on DAP was first suggested
by Hunt {1974]. (In Burope, white-black chessboards are more uswal than red-black
ones) .

In Pigure 3.5 we list a DAP-FORTRAN subroutine PROJSBOR for implementing the
heart of the algorithm (3.7), (3.8). The subroutine is provided with several input
parameters with obvious meanings. In addition, two logical matrices are provided as
inputs the logical matrix MASKMASK is true at gridpoints in the interior of the
dam, and false elsewvhere; the logical matrix MASK is true at black gridpoints and
false at red gridpoints. Finally, the vilues of the real ma.rix W at the boundary
points 9R wmust be computed using (3.4d) before PROJSOR is called. A full listing

of the program is given in Appendix B,

18-
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SUBROUTINE PROJSOR

COMMON /RMAT/W( , )

COMMON /RSCA/MAX DIFF,OMEGA,EPSILON,DAM WIDTH,DAM HEIGHT
COMMON /ISCA/NUMB ITERATIONS,NUMB ROWS,NUMB COLS

COMMON /SUBLMAT/MASK( , ), MASK MASK( , )

REAL W,MAX DIFF,OMEGA,EPSILON,DAM WIDTH,DAM HEIGHT
LOGICAL MASK, MASK MASK

INTEGER NUMB ITERATIONS,NUMB ROWS,NUMB COLS

REBAL 2( , ), GRID2, ZMIN W( , ),SAVEW( , ) Local variables.
REAL ALPHA,BETA

INTEGER NUMB TIMES

LOGICAL DONE, WSIGN( , )

EQUIVALENCE (WSIGN, W)

W(WSIGN) = 0.0 Ensure that W is nonnegative
everywhere.

ALPHA = OMEGA * .25 Calculate the constants that are

BETA = 1.0 - OMEGA needed later on.

GRID2 = (DAM HEIGHT/NUMB ROWS) ** 2

SAVE W = W Start main loop.
NUMB ITERATIONS = NUMB ITERATIONS + 1 Save the old value of W.
DO 45 NUMB TIMES = 1,2

MASK(MASK MASK) = ,NOT. MASK Reverse state of MASK.

Z =W+ W=,~) Calculate Z on only the red (or

Z=2Z(+, ) + 2( ,+) - GRID2 black) points as determined by

W(MASK) = ALPHA * Z + BETA * W the MASK.

W(WSIGN .AKD. MASK MASK) = 0.0 Project

CONTINUE

MAX DIFF = MAX(ABS(SAVEW - W)) Find maximum difference between
old and new.

DONE = (MAX DIFPF.LE.EPSILON) Check if desired accuracy is

IF (.NOT. DONE) GO T0O 40 attained.

FIG. 3.5. The DAP subroutine PROJSOR.
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The computation time for one pass through the main loop of the subroutine

PROJSOR i3 estimated in Figure 3.6, from which it follows that each PROJSOR
iteration, which requires two passes through the loop, takes about

2 x 1135 = 2,27ms. To check this estimate, the average execution time per
iteration in the subroutine PROJSOR was obtained by measuring (on a real external
physical clock) the time required for a large number of iterations for the dam

problem with H =24, h= 0, L = 16, and Ax = 1. (This particular problem was

chosen because it is a test problem which has been solved by many authors). The
measured time per iteration on the pilot DAP was 2.2ms, as compared to the estimated

time of 2.27ms.

Statement Operations Time (us)
1 MASK(MASKMASK) = ,NOT. MASK 1 logical mask 1
1 logical negation 1
1 logical store 1
2 Z =W+ W-,~) 1 index shift of two places 21
1 floating point matrix addition 160
3 2= 2Z(+, )+ 2( ,+) - GRID2 2 index shifts 30
1 floating point matrix addition 160
1 floating point matrix
subtraction 160
1 scalar-matrix assignment 15
4 W(MASK) = ALPHA * 2 1 floating point matrix addition 160
+ BETA * W 2 floating point matrix
multiplications by a constant 400
1 logical mask 1
5 W(WSIGN .AND. MASK 1 logical AND 2
MASK) = 0.0 1 logical mask 1
1 scalar-matrix assignment 15

DO 15 NUMB TIMES = 1,2

|~l

PIG. 3.6, Estimated computation time for the inner loop of PROJSOR.
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We conclude this section with some comments:

1« For comparison, the dam problem with H= 24, h= 0, L = 16, and Ax = 1 was also
solved on the UNIVAC 1180 at the University of Wisconsin, using the conventional
ordering of gridpoints and an optimizing compiler with single precision
arithmetic (36 bits), and the time per iteration was found to be 5.29ms. For
this problem the Pilot DAP was therefore 2.4 times faster than the UNIVAC 1180.

It should be noted that for this problem only 25 x 17 = 425 of the 1024
DAP PEs were used. On a square region the Pilot DAP would be six times faster
than the UNIVAC 1180.

2. 1In general, one expects to be able to predict DAP execution times to within

about 5%, because DAP programs have little overhead and spend almost all their

time in computation.

N

3. Since DAP floating point operations are relatively expensive, it is worthwhile
optimizing the code. (Readers who used early computers which also had
relatively slow arithmetic operations may feel nostalgic). An example of such
optimization occurs in the subroutine PROJSOR (see Figure 3.5). The computation
(3.7a) could have been implemented as: ~

Z = W+, )+ W=, ) + W ,+) + W ,-) - GRID2
which requires three additions and one subtraction, and takes
4(15) + 4(160) + 15 = 745us .
(shifts) (additions) (scalar-matrix assignment)
However, by sharing intermediate 1esults between PE's, the amount of arithmetic can

be reduced; the implementation in PROJSOR is

Z =W+ W(‘,-)

i
I3
4
i

Z = 2(+, ) + 2(+, ) - GRID2

which is estimated at only 546us.
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It should be noted that both implementations use only half the PEs for

arithmetic at any one time. Larger grids or three-dimensional problems (see Section

4) can use all the PEs simultaneously.
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4. Numerical solution of a three-dimensional free boundary problem.

A three-dimensional extension of the dam problem of Figure 3.1 was introduced

by Stampacchia [1974) (see also France [1974]). Water seeps through a porous dam in
a rectangular channel of width a and height H. The walls of the dam are vertical
but the thickness of the dam is variable, so that the dam occupies the region

93 = 92 x (0,H) , (4.1)

where the horizontal cross-section 92 is of the form

92 = {(x,y) : 0 < x < a, ¢1(x) <y« wz(x)} . (4.2)
In the specific problem considered here, 92 is the L~shaped region
#, = (0,ED) x (0,FE) U [ED,AF) x (0,AB) , (4.3)

where the points A, B, C, D, E and F are as shown in Figure 4.1. The upstream
water height is H and the downstream water height is h.
As shown by Stampacchia [1974], the problem can be formulated as follows:

Find u on the region 93 such that:

2
(a) -Vou = -[uxx + uyy + uzz] > =1, in 93 '
(b) w20, in @, (4.4)
(c) u(-Vzu + 1) =0, in 93 R
and
r 1 2

=~ (H - z)”, on the upstream face AAOFOF '

2
% (h - z)2, on the downstream face below water level BOCODOE0E1D1C1B1 ’
u=g =« 0, on the downstream face above water level B4C4D4EEDCB , (4.5)
o, on the top ABCDEF ,
L al{x,y), on the bottom AOBOCODOEOFO
and
u_ £ u = 0, on the sides ABByA;, and EFF,E; . (4.6)
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FREE SURFACE

s ‘X DOWNSTREAM

FIG. 4.1. Flow through a three-dimensional porous dam with

L~shaped horizontal cross—~section.

Here a(x,y) is the solution of the two~dimensional mixed boundary value problem

(a) a  * ayy =0, in AOBOCODOEOFO R
1.2
- 2 H, on AOFO
(b) a = (4.7)
l h2 on B.CD.E
2 ! 070700
(c) a fa = 0, on AOBO v EOFO .

To solve the problem (4.4)-(4.7) numerically we introduce a grid with

Ax = Ay = Az and denote the approximation to u([i - 2]Ax,[j - 1)Ay,[k - 1}Az)

by Wi4k? and the approximation to a({i - 2]4x,{j - 1]Ay) by wij = wij1'

2<¢<i<M-1 and 1 < j <N. As in Bruch [1980] the computation proceeds in two

for

stages:
stage I: The two-dimensional problem (4.7) is approximated by replacing the

differential equation (4.7a) by the difference equations
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33k

b

= O . (4.8)

AW g T Yiet,3 T Yi-1,3 T V1,941 T Vi, -1
The Dirichlet boundary conditions (4.7b) are satisfied by computing and storing the

values of wij1 = aij on AOFO and BOCODOEo' The Neumann conditions (4.7c) are

satisfied by introducing two fictitious rows of gridpoints, adjacent to AyB and

EyF, respectively, and requiring that the values of w on a fictitious row should
be equal to the values of w on the corresponding interior row; that is,
Wi = W3y and VM, § = WM-2,5° for 1 < j < N.

The resulting system of equations is solved using a simple modification of the
subroutine PROJSOR (see Figure 3.5): the term =-GRID2 is dropped from statement
number 3; statement number 5 is deleted; and the statements

wil, ) = w3, ) ,
(4.9)

W(M, ) = WM-~-2,),
are inserted between statements number 1 and 2, so as to make the values at the
fictitious points equal to the corresponding interior values;

Stage II: The three-dimensional problem (4.4) is approximated by the LCP

+ + + +
(a) R T A T T B B I
+ w + w - (Ax)2
i,3,k=1 i,3,k+1 !
(b) V20 (4.10)
(el Y,k 5,k T Yk, 9,k T Yim1,9,k 0 YiLget,k T YiLi-1,k T

2
TV, ket T Vi, geet AT =00

The Dirichlet boundary conditions (4.5) are readily imposed, while the Neumann
conditions (4.6) are treated by introducing fictitious sides parallel to the sides
ABBjA, and EFF3E,;, and requiring that the values of w on the fictitious sides

be equal to the values of w at the corresponding interior points.
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To solve the ICP (4.10) we introduce a three-~dimensional red-black partitioning
of the gridpoints, so that each red(black) gridpoint has six black(red) neighbors.
(It should be noted that the red/black ordering on any horizontal plane is the nega-
tion of the red/black orderings on the adjacent horizontal planes.) As in the two~
dimensional problem treated in Section 3, each projected SOR iteration can be broken
down into two stages: a red stage in which projected SOR is applied to all the red

points in the three-dimensional w array, followed by a similar black stage. In

detail:
Red Stage
z(k,red) - w(k,black) . w(k,black) + w(k,black) w(k,black)
(a) ijk i+1,3,k i-1,3,k i,3+1,k i,3-1,k
(k,black) (k,black) 2
Yi, 3.kt T Vi,3,k- (A" .
(k+ 14 ,red) _ (k,red) (k,red)
(b) wijk = (w/6)zijk + (1 w)wijk ' (4.11)
(k+1,red) _ (k+ 14 ,red)
(c) Yiik max{o,wijk }
Black Stage
z(k,black) - w(k+1,red) + (k+1,red) w(k+1,red) w(k+1,red)
(a) ijk i+1,3,k i-1,3,k i,j+1.,k i, =1,k +
(kx+1,red) (k+1,red) _ 2
wiljlk+1 wiljlk-1 (Ax) ‘
(k+ b&,black) (k,black) (k,black)
= - .1
(b) wijk (m/s)z1jk + (1 w)wijk ' (4.12)
(k+1,black) _ (k+ 4 ,black)

(c) wijk = max{O,wijk } .

To implement the algorithm (4.11), (4.12) it was assumed that the dimensions of
92 were such that the gridpoints on any horizontal cross-section of the dam could
be regarded as a subset of a 32 x 32 array. The solution w was stored as an array

of matrices, the matrix W( ,,k) containing the values of w on the horizontal

Py =S TSy~




plane at a height (k - 1)Az. To control the parallel computation two logical
matrices were used: MASKRB which is true at interior red gridpoints in the current
horizontal cross-section and false otherwise; and MASKMASK which is true at interior
points of 92 and false otherwise.

The algorithm (4.11), (4.12) was implemented in two ways:

Implementation 1:

P

i N NN R N e i

During each red(black) stage the horizontal planes were updated in turn, and on
each plane the red(black) points were updated in parallel.

The computation of z(¥) requires five additions and one subtraction. Given
an unlimited number of processors, n additions/subtractions require logzn steps,
so that six additions/subtractions require at least three steps. By taking
advantage of idle PEs, and remembering that, on the DAP, shift operations are much
faster than arithmetic operations, the DAP-FORTRAN subroutine in Figure 4.2 is an
efficient implementation of (4.11), (4.12) (compare Figure 3.5). A full listing of

the program is given in Appendix C.

The subroutine in Figure 4.2 uses the functions SHS(outh) and SHN(orth) to
shift W instead of the equivalent, but slower, statements (4.9).

Implementation 2:

As in the three-dimensional magnetohydrodynamic code of Reddaway [1976] we re-
arrange the values of w. The horizontal planes are considered in pairs, and the
red points on each even-numbered plane are exchanged with the corresponding black
points on the next odd-numbered plane. As a result, instead of having n planes,
each containing red and black points in a checkerboard pattern, we have n/2 planes
of red points interleaved with n/2 planes of black points. This makes it possible
to use simultaneously all interior PEs for arithmetic.

The corresponding subroutine is given in Figure 4.3, and a full listing of the
program is given in Appendix D. To save time the test for convergence is executed

only every TIMES iterations, where TIMES is an input parameter.

&
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The subroutine in Figure 4.3 assumes that there is an even number of planes.
To avoid additional testing, it is assumed that a copy of the top plane is stored
above the top plane.

The two implementations were run on the problem with H = 10, h = 0,
AF = FE = 20, CD = BC = 10, which was chosen because it had previously been solved
by Bruch [1980]. For comparison, the problem was also solved on the UNIVAC 1180
using single precision arithmetic and optimized FORTRAN code. The measured computa-
tion times per projected SOR iteration (including both red and black stages) were:

Implementation 1: 32ms

Implementation 2: 16.0-18.2ms
(dependent on frequency of convergence tests)

UNIVAC 1180: 34ms
so that implementation 2 on the Pilot DAP is about 2 times faster than the UNIVAC
1180.
The estimated time per SOR iteration (implementation 2) was found as in Figure

3.6, and was found to lie between 15.4 and 17.4ms, depending upon the frequency of

convergence tests.

For this problem only 383 (i.e. 21 x 23 - 10 x 10) of the 1024 PEs were used.




C THE MAIN LOOP - PROCESS ALL THE Z PLANES
C

SUBROUTINE MAIN LOOP
COMMON /ISCA/ TOPPLANE,M
COMMON /ISCA/ DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT
INTEGER TOPPLANE,M
INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS
REAL DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF
COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF
COMMON /RMAT/W( ,,25)
COMMON /SUBLMAT/MASKRB ( , ), MASKMASK( , )
LOGICAL MASKRB, MASKMASK
REAL SAVEW( , ), 2 ( , ), 21( , )
REAL MAXSOFAR, ALPHA, BETA, WIDGRID2, WIDTHGRID
INTEGER NUMBTIMES, TOPPLANE
LOGICAL TEMPMASK( , ) , DONE, WSIGN( , )
EQUIVALENCE (WSIGN,Z)
ALPHA = OMEGA * 1.0 / 6.0
BETA = 1.0 - OMEGA
c
C WIDTH OF GRID (I.E. ONE UNIT SQUARE) IS SET TO 1.0
c
NUMBITERS = 0
WIDTHGRID = 1.0
WIDGRID2 = WIDTHGRID * WIDTHGRID

SAVE THE MASKRB FOR LATER RESTORATION

[e e lKe]

TEMPMASK = MASKRB

MAXDIFF IS THE MAXIMUM DIFFERENCE BETWEEN SAVEW AND W( ,,K) AFTER W( ,,K)
HAS ITS RED (OR BLACK) VALUES CHANGE (FOR ALL K)

00000

MAXDIFF = 0.0

NUMBITERS = NUMBITERS + 1
MASKRB = TEMPMASK

DO 30 NUMBTIMES = 1,2

ITERATE FROM THE 2ND PLANE TO THE TOP PLANE

NOon

DO 20 K = 2, TOPPLANE
SAVEW = W( ,,K)

REVERSE RED/BLACK FUR SUCCESSIVE PLANES

ooy
oo

MASKRB(MASKMASK) = .NOT. MASKRB

3
c

k C SUM THE SIX NEIGHBORS

3 SAVEW(1, ) = SHN(SAVEW,2)
SAVEW(M, ) = SHS(SAVEW,2) .
Z = SAVEW(-,~) ,
Z1 = SAVEW

‘ ; Z1(MASKRB) = W( ,,K + 1)

4 : Z(MASKRB) = W( ,,K = 1)

' Z =2 + 21

Z1 = Z( 0+)
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Z1(.NOT.MASKRB) = ~WIDGRID2
2 =2+ 21
Z =2 + Z(+, )

STORE THE AVERAGE OF THE SIX NEIGHBORS IN W ONLY IN THE RED (OR BLACK) CELLS

aO0n0n

Z = ALPHA * Z + BETA * SAVEW
Z(WSIGN) = 0.0
W(MASKRB,K) = 2

FIND THE MAXIMUM DIFFERENCE ON THIS PLANE

(oo le]

MAXSOFAR = MAX(ABS(SAVEW - Z),MASKRB)
IF (MAXSOFAR .GT. MAXDIFF) MAXDIFF = MAXSOFAR

0 CONTINUE

REVERSE STATE OF ORIGINAL MASKRB FOR THE 2ND PASS THROUGH THE PLANES

anoanwN

MASKRB(MASKMASK) = «NOT. TEMPMASK

30 CONTINUE
DONE = (NUMBITERS.GT.DAMMAXITERS ).OR.(MAXDIFF.LE.DAMEPSILON)

IF (.NOT. DONE) GOTO 10
MASKRB = TEMPMASK
RETURN

END

FIG. 4.2. First implementation of (4.11) and (4.12).
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THE MAIN LOOP - PROCESS ALL THE Z PLANES

SUBROUTINE MAIN LOOP

COMMON /ISCA/ TOPPLANE,M

COMMON /ISCA/ DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT
INTEGER TOPPLANE M

INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, TIMES

REAL DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF

COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF, TIMES
COMMON /RMAT/W( ,,25)

COMMON /SUBLMAT/MASKRB( , ), MASKMASK( , )

COMMON /WORK/ Z,WK

LOGICAL MASKRB, MASKMASK
REAL SAVEW( , ), 2Z( , ), 21(, ), WKP1( , ), WK( , ), MAXD( , )

REAL MAXSOFAR, ALPHA, BETA, WIDGRID2, WIDTHGRID
INTEGER NUMBTIMES, TOPPLANE

LOGICAL TEMPMASK( , ), DONE, WSIGN( , ), TEST, NOTTEST
EQUIVALENCE (WSIGN,Z), (Z,Z1), (WK,WKP1)

ALPHA = OMEGA * 1.0 / 6.0
BETA = 1.0 - OMEGA

WIDTH OF GRID (I.E. ONE UNIT SQUARE) IS SET TO 1.0

NUMBITERS = 0
WIDTHGRID = 1.0
WIDGRID2 = WIDTHGRID * WIDTHGRID

TEST = TIMES .EQ. 1
NOTTEST = .NOT. TEST
ITIMES = TIMES

MAXD = 0.0

ALTER ALL THE ODD NUMBERED PLANES:
KM2 = 1
DO 20 X = 2,TOPPLANE,2
WK = wW( ,,K)
WK(1, ) = SHN(WK,2)
WK(M, ) = SHS(WK,2)
Z = WK + WK(-,~)
Z = (2(+, ) + 2( ,+) + WK + MERGE(W( ,,KkM2),Ww( ,,K + 2),MASKRB)
- WIDGRID2) * ALPHA + SAVEW * BETA
Z(WSIGN) = 0.0
W(MASKMASK,K + 1) = 2
IF (NOTTEST) GOTO 20
Z1 = ABS(SAVEW - Z)
MAXD(Z1.GT.MAXD) = 21
KM2 = K
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C ALTER ALL THE EVEN NUMBERED PLANES:
DO 21 X = 2,TOPPLANE, 2
SAVEW = W( ,,K)
WKP1 = wW( ,,K + 1)
WKP1(1, ) = SHN(WKP1,2)
WKP1(M, ) = SHB8(WKP1,2)
Z = WKPT1 + m'('r')
Z = (Z(+, ) + Z( ,+) + WKP1 + MERGE(W( ,,X + 3),w( ,,K - 1),MASKRB)
= WIDGRID2) * ALPHA + SAVEW * BETA
Z(WSIGN) = 0.0
W{(MASKMASK,K) = 2
IF (NOTTEST) GOTO 21
Z1 = ABS(SAVEW-Z)
MAXD(Z1.GT.MAXD) = Z1
CONTINUE

ITIMES = ITIMES - 1

IF (ITIMES.GT.1) GOTO 2
IF (ITIMES.EQ.0) GOTO 3
TEST = ,TRUE.

NOTTEST = .FALSE.

GOTO 2

NUMBITERS = NUMBITERS + TIMES
MAXDIFF = MAX(MAXD,MASKMASK)
IF (MAXDIFF.LT.DAMEPSILON) GOTO 4

IF (NUMBITERS.LT.DAMMAXITERS) GOTO 1
RETURN
END

FIG. 4.3. Second implementation of (4.11) and (4.12).




5. Future possibilities

; (a) For purposes of comparison we have used previously published problems but they
have dimensions which do not match the DAP array closely. In many practical
problems the resolution would be tailored to the DAP dimensions to achieve
higher performance.

(b) The programs presented are readily extensible to larger problems on
correspondingly larger DAPs such as the production 64 x 64; it is only
necessary to change the boundaries. The time to process one plane would be
unchanged.

(c) Performance on small three-dimensional problems can be improved by mapping
several problem planes onto one DAP matrix.

(d) Problems with large "horizontal" dimensions can be mapped with each PE holding
a small neighborhood group of points. Performance improves because each PE
holds both black and red points (Hunt [1979]).

(e) Very large problems cannot be held entirely within DAP store. For example with
four times as many points in a horizontal plane as there are PEs the limit is
about 26 planes with 4K bits per PE or about 122 planes with 16K bits per PE.
with backing store the transfer rates with N active problem planes in the DAP
can be minimized by advancing each plane (N - 2)/2 iterations per backing
store fetch. Hence it should be possible to achieve a balance between input-
output and processing times (Reddaway [1976]).

(f) Problems of ;his type offer possibilities for using fixed point arithmetic
(with suitable scaling) and using low precision for computing the iterative
corrections. This is much faster than floating point work and performance
improvements as large as a factor of 10 are predicted without loss of accuracy

in the final solution.
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6. Conclusions
We have demonstrated that two~ and three-dimensional linear complementarity
problems can be solved on DAP with high performance and easy programming using a

version of projected SOR. There is scope for even higher performance and for

tackling a wide range of problem sizes.
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APPENDIX A: The Pilot Host-DAP Interface.

In the Pilot DAP system the store of the DAP is not an integral part of the
host's store as with the production DAP's. It is therefore necessary to explicitly
move data between the host and DAP and this is achieved by using standard host
FORTRAN subroutines. The subroutine names begin with DAPTO or DAPFROM depending on
whether they move data into or out of the DAP. The remaining letters of the name
indicate the type (integer or real denoted by 1 or E) and rank (scalar, vector or
matrix denoted by S, V, or M) of the variable transferred. Parametérs of DAPTO and
DAPFROM give the name of the host program variable and the location within the DAP
in terms of the name of the common area and the offset from the start of this area.

Initiation of DAP processing is also less direct on the Pilot system with DAP-
FORTRAN subroutines being called via the standard host FORTRAN subroutine DAPGO. A
statement of the form:

CALL DAPGO('DAPSUB',N)
will suspend execution of the host FORTRAN and transfer control to the DAP-FORTRAN
subroutine DAPSUB. Execution of the host FORTRAN is resumed after DAPSUB and any
further levels of DAP-FORTRAN subroutines have been executed. The parameter N

gives the maximum number of seconds allowed for DAP processing.
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APPENDIX B: The two-dimensional dam problem.

»ASTER ECALpAL

T41S OROURAM I1gES FINITE DIFFERENCES TO SULVE NUMERICALLY
THE YARIATIONAL INEWVALITY FLOW THROUGH A RECTANGULAR uAM,

T4HE ORIGINAL PRUGRAM WAS WRITTEN BY DR €, CHYEK AND WAS
EXECUTED 0N A UNIVAC 1110 AT THE UNIVERSItY OF wISCINSIN j
{ 1ARC- 2%, 19777 JUNE 19179)

T-IS PRIVRAM 4AS ARITTEN BY JOWN STANSBURY IN vaP FORIKAN
240 EXECYTED On AN ICL 1900 (HOST) AND ON Trk VAP AT THE
RESQEAICH 4ND ADVANCED OEVELOPMENT CENTRE IN STEVENAGE
ENGLAND VJUNE 170204 1979),

EXPLAINATION OF VARJABLES i
W = T-JF VALUES AT THE GRIDPOINTS v 3
i -~ THE NEW VALUES AT TH& GRIDPOINTS k
MaSY « USED T) IMPLEMEN(T THE REU/BLACK SCHEME

MAGK JLSR = UGEV IN SETTING Up THE MASKs, AND IN SWAITCHING STATES
LCC E3rS = DIFFERENCES BETWEEN THE OLD ANU THE NEW VALUES

O4ESA = JHE JYENRRELAXATIUN PARAMETER
Epglion = TME NDESIRED ACCURACY o
DINE o« & TEWPDRARY LOGICAL VARIABLE

NJM3 [12RaTIONS =» THE NUMBER UF ITERATIUNS

MaX ITERARTIONS = THE VAXIMUM NUMBER OF ITERAJTIUNS

1043 ROWD » TWe NUMBER OF ROWS IN THE GHRIVD

NAOMS COLY = THe NUMBER DF COLUMNS IN THE ORIV

AtTr GudD = J1uTH UF ONE UNIT IN THE GrIU

HEIGHT OKIND =& REIGHRT OF UNE UNIT IN THE GrlV

U8 WINTH = SELS EXPLANATORY :
CAM HEILNT = SELF EXPLANATORY !
A GHIZPJIANTS « THE NUVBER OF GRIUPOINT IN THE X DIRECIIIN :
Y GRIDVPIINTS o THE NUMSBER OF GRIDPOINT [N InE Y DIRECTION

SITES [T 1S ASSUMED THAT MEIGHT GRID = WIDTHM GRIV

JECLAATE )y JF VARIABLES
Clin iy [ IAT/HL32032)
Cliar ) e /RASCA/YAX DIFF, UMEGA, EPSILON, vam AlUT~, Dam HELOHWT
Couid 40N /15CA/MAX JTENATIONS, NUMB ITERATIUNS, NUMH RUNS, NUMdg QJLS
1 § YRIUPDINTS,Y SRIUPOINTS
HEAL w0 NMEGAr EPSILON, DAM WIDTH:e DAM HELIGAHT, MAX UIFF
INTznem Ak JTERATIINS, NUMH ITERATIONS: NUvs RUNS, wJvd COLS
1 x ORIJUPOINTS, ¥ GRIDPOINTS
DAJGE 99

RELY b UldeNgIunNg UF THE DaM, AND THE MAXIwMJv NYWBER JF [1ERATLIING
«ZAN(301021ENUR2)) DOAM WIDTH, ULUAM AEIGHMI, vaKk lle<AlLUNS
FarwTV2FLe B¢ 15)

PP aldTy LGT, 1,2) JAND, (DAM HEIGRT ,G60, 1,2)) 61U S
SAlTEVO, 4d ) UAYM WIDTH) YAM mElGHT

FELR BT Dl vd = ,F15,5,8H NY w oF1).95)

PRV
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39

READ IN IHE NUMBER OF ROWg AND COLUMNg IN THE GRID, AND EPSILOV
AEAI(51120) NUMA COLS, NUMB KUWSs EPS{LUN
FIRMATI215, F10,5)
ARITE(®,130) DAY MEIGHT, DAY WIDTH) EPSILON, NUMB RUaS,

1 NUMB COLS, MAX ITERATIONS H

FIRAATVITHIINPUT PARAMETERS,/14H DAM HEIGHT = ,E}3,0, |
1 19H DAV AIDTH g 4E13,6,11K EPSILUON = oE1346¢/ ;
2 104 NWUMHER OF ROAS s 151211 NUMBER UF CULUMNS = 415, s
4 2&W AxpMuv ITERATIONS ® 4,15 T T T

CONVERT AND TRANSFER O0ATA 1O DAP
CiallL DAPTO ES(EPSTLON;4HRSCA,2)
CAL. DAPTD Es(DAM WIUTH,3HRSCA,3)
Cili OAPTU ES(DAM MEIGHT,d4HRSCA,4)
CALL UAPTO Tg(MAX ITERATIONS,qHISCA,0)
CALL OAPTO 1S{(NuMB RUAS,gMISCA(2)
CALL OAPTU IS(NUMB COLS,4MISCA:3)

CaLlL vAIN pDAP FORTRAN SyBROyTINE
CALL URPGU(THLAPLACE,10)

CONVERT AND TRANSFER DAP DATA BACK 7O 900
CALL DAPFRIV EM(AsG4R4AT,D)
CALL OAPFRUM ES(OMEGA,IHRSCA,1L)
CALL OMPFROV ES(MAX (NIFF,qHRSCA, Q)
CALL OAPFROM IS(NUM3 ITERATIONS,qWISCAp1)
CALL ORPFROW IS(Y GRIDPOINTS, 4HlSCa, 5)
CALL OAPFROM IS(X GRIDPOINTS, 4HISCA, &)

WQITE QUi THE gCALERS
WRLITE(®,16GY) NUvYB ITERATIONS, OMEGA, MAXK OIFF
FIRMAT Y sy /77,y NUVBER OF ITERATIONS ® v p[S,r OMEGR = 1,E13,0
{ v AAXIMUM DIFFERENCE s Y,E13,6)

nITE DUl W
J 2 Y BRIDPOINTS
ARITE(®,155) (wtlev)y ImgeX GRIDPOINTS)
FIRWAT(?® 9,;9€£13,6)
J s J "
1IF (J +GE, 1) GOID 10
~ITS{0,170)
FIRUATAY Y,7/7)
393 32 & = 3, ¥ GRIDPUINTS
SRITE(O,1bU) (wlled)y 4 = }, X GRIDPOINTS)
FARIATVY *,aF13,.6)
Ty vk
il B I
F o
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SUBROUIINE LAPLACE

SJBROYUTINE TO CARRY QUT THE CALCULATIONS UN THE DaP
COMVON /RMAT/HW(,)
COMVMON /RSCA/MAX DIFF, OMEGAs EPSILON, UAM WNI1DTH, DAM HEIGHT
CIMMON /ISGA/MAX ITERATIONS, NUMB ITERATIUNS) NUMg ROWS, NUYg COLS
COMUON /1SCA/X GRIDPOINTS, Y GRIDPOINTS
REAL w~¢ MAX DIFF, OVEGAR, EPSILON, UAM WiIDTH, VAM HEIGNT
INTEGEN MAX ITERATIONS: NUMB ITERATIONS, NUMB ROUNS, NUMB COLS
INTEGEN X GRIDPIINTS, Y GRIDPOINTS

SET Up DAP FUQTRAN COMMON AREAS
COMMON /SUBRSCA/MHEIGHT GRID, WIDTH GRID
COMMON /SUBIMAT/MASK(¢)y MASK MASK{,)
REAL HEIGHT GRID, WIDTM GRID
LOGICAL MASK, MASK MASK

INITILIZE ALL VARIASLES

CALL INIT UTHERS
CALL INIT MagK
CALL INIT W

PERFORM I1HE ACTVAL CALCULATIONS
CALL MYAIN LOOP

WE HAVE NOw EITHER ACMEIVED THE OESIRED ACCURACY (] E,¢ MAX ERR
X EPSILUN) OR WE HAVE ITERATED MORE THAN MAX [TERATIUNS TIMES,

RETJRN
SUBROQULINE INIT MASK

SUBROUTINE TO INITIALIZE THE +dasK
CIMAON /ISCA/MAXR ITERAIIONS, NUAD LTERALLUNSINUME RUNSpNIUMB COLS
CIMVMON /1SCA/X GRIVDPOINTS, ¥ GRIDPOINTS
CIMMON /SUBLMAT/MASK( ), MASK MASK(,)
INTEGER MAX JTERAIIONS, NUMB ITERATIONS, NYMB gOANS) NuMB COLS
INTEGEN X GRIUPOINTS, Y GRIOPUINTS
LOGICAL MASK, MASK MASK

MASK VASK IS A LUGJCAL WMASK USED IN SETTING UP AND IN CHANGING THE
STATE OF THE VadK, YASK MASK(I,J) IS FALSE WHEKRE | ® § OR 1 >

NUMB ROWD] AND WHEKE J 3 1 UR WHERE J > NUMY CULS, IT IS TxUE
ELSENHERE,

MASK MASK ® _NOT, C(ALTC{NUMAR KO4S) ,0R, ALTRUNUMB COLS))
MASK VASK(l,) =  FALSE,
MASk 1ASK(sl) 3 FALSE,

MAGK IS MICH THE SAVE AS '1ASk #ASK, EXCEPI THAl WHEHE MaSK ¥as«
1S TRUE, “ASK ALTEKRVATES BETWEEN TRUE anND FALSE, JEPENUING
ON THE FULLOWINGY

IF MAIK MASK(],J) s THRUE aND | ¢ J IS EVEN ITHEN VASK(],J)

s TRUE, ELSEs MaSK(I,J) ® FALSE,

MASK a ALTC(1) ,LEQ, ALTR(1)
MASK (NOT  ,MASK VASK) = _ FALSE,
TRACE 327 (MENGE(1,y)sMASK MASK))
TRACE 427 (YENGE(1,00MASK))
RETURN

Py




SUBROUI INE INIT OTHERS

1 SUBROYTINE 710 INITIALIZE THE OTHER VARJADLES
cOMMON /RSCA/MAX DIFF,OMEGA,EPSILON,DAM WIDTH,DAM HEIGHT
COMVMON ZISCA/MAX LTERATIONS,NUMB JTERATIONS,NUMB HOWS,NUMB CULS
COMMON /ISCA/X GRIDPOINTS, v GRIDPOINTS
COMMON /SUBRSCA/HEIGHT GRID, WIDTH GRID
REAL “AX DIFF, OMEGA, EPSILON, DAM WIDTM, DaM HELGHT
REAL HEBIGHT GRID, WIDTH GRID
INTEGEX X GRIUPJDINTS, Y GRIDPUINTS) MAX ITERATJONS, NUMB JTERATJONS
INTEGER NUMB RQOANS, NUMB COLS

C
C FOR THE I1EST RUN,
c DAV HEIGHT = 24,0
LY DAV NiIDTH = 15,0
X GRIDPOINTS = NUMB COLS +
Y GRIDFOINIS = NUMB ROWS ¢ |
, _ HEIGHT GRIV » DAM HEIGHT / NUMB ROWS
' WIDTH GRID = LAY WIDTH / NUMp COLS
v OMEGA * 1,8
NUMB JIERATIQONS = 0
RET JaN _ A .
SUBROQUIINE INIT W )
N COMMON /RSCA/MAX DIFF,UMEGA,EPSILON,DAM WIDTH,DAM HEIUNHT
REA{ MAX DIFF+OVEGA,EPSILON,DAM WIDTH,DAM HEIUHT
i COMMON /IScA/MAX ITERATIONS,NUMg [TERATLIOUNS,NUMB RONS,NUMg CULS
¥ COMMON /1sCa/x GRIDPOINTS, ¥ GRIDPOINTS
B COMVON /SUBRSCA/HEJGHT GRID, WIDTH GRID
i ' REAL HEIGHT GKID, WIDTH GRID
i INTEGEN MAX JTERAT[ONSs NUMa ITERATIONS/NUMa ROWS, NUMg (OLS :
; INTEGEN X GRIUPDINTS, Y GRIDPUINTS ;
! COMANN /RMAT W (,) 3
REAL A¢ TEMPV(), TEWPS
REAL INDEX()
C
c INITIALILE THE W MATRIX, I,E,, SET THE CUNSYANY BUUNDARY VALURS
c AMD THE SNITIAL NONeBOUNWARY VALUES,
C
c SET UP A VECTOIR CONTAINING Tmg INDICES
DO 30 & = 1,32
INDEX(i) » | » 1,0
350 CONTINVE
C
C SET AL VF A = LERU
W s 0,V
C
C CALCULATE TWO TEMPORARY CONSTANIS
TEMPS 3 DAM KWEIGHT ¢ DA4 HEIGHT * 5,5
TEMPY 3 [NDEY / NUmMB RUWNS
Wlptl) ® TEAPS ¢ (1,0 = INDEA & AJOTH GRIU / UAM wiDTH)
W(l,) ™ TEMPS & (1,) m» TEWPY) ¢ (1,0 = 1EWPV)
TRACE 327 (4)
TRACE 127 (TEMPS, uavM HEIGHT, wl0TH GRIV)
TRACE 327 (DaM AlUTH, AEIGHT OGWID)

TRACE 127 (TEMPV)
TRACE 127 (INVER)
RETURN
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feX s X 8 o0 e

SJUBROUIINE YAIN LOOP

SyBROyYTINE 10 CARRY Oyt THE CALCULATIONS

CIMMNY JRMAT/H(4)

CIMUNN /RSCA/MAN DIFFsOMEGA,EPSILON,DAM wlDTH;DAM HEIGHT
COMMON /ISCA/MAX ITERATIONS,NUMg ITERATIONS,NUMB ROWS,NUMg COLS
COMVON /1sCa/X GRIDPODINYSy Y GRIDPOINTS

COMMQON /SUB|MAT/MASK(,), MASK MASK(,)

COMvON /SJUIRSCA/HEIGHT GRID, WIDTH GRIOD

REA| 4¢MAX DIFF,OMEGA,EPSILON,DAM WIDTH/OAM NRIGHT

REAL HEIGHT GRID, WIDTH GRID

LOGICAL MASK, MASK MASK

INTEGEN X GRIDPOINTS, Y GRIDPUINTS

INTEGER MAX ITERATIONS, NUMB ITERATIONS: NUMU ROWS, NUMB COLS

LOCAL VAKRIABLES

REAL 2%,)s w1V GRID 2, Z MIN W(,), SAVE wi,)
INTEGEX NUM3 TIMES

LIGICAL DUNE, W SIGN(y)

EQUIVALENCE (A SIGN, W)

ENSURE IHAT W IS >m ZERD EVERYWHERE

W(NSIGN) = 35,0

CALCULATE THE CONSTANTS iHAT ARE NEEDED LATER UN

ALPHA ® OMEGA » ,25
BETA = 1,0 « OMEGA
WID GRID 2 w AJDTH GRIV » WIDTH GRID

START 4AlN LOaP
SAVE THE OLD VALUE OF W

SAVE A = W
NUM3 [IENRATIONS = NUMB ITERATIONS ¢ |
DI 35 NUMB TIMES = 1,2

REVERSE STATE nF MASK

MASK(4ASK WASK) & ,NOT, MASK

CAaLCuLaTE 2 JN UNLY THE RED (DR BLACK) PUINTS AS DETEWNMINED BY
THE MasX

LB A * A(9m)
7 = 2(*,) * 72(,4) » WiV GRID 2
WiMasx) = ALpHA # I ¢ gETA & W

SPECIAL PaRTV ENSYRE tHAT 4 IS 2 O

W(W SIUN _AND, YASK MASK) = 0,0
CINTINVE

FInND wvaXdéMuvM DIFFERENCE BETWEEN OLO AND NEw w

Max plrF 3 JAK(ABS(SAVE W » W))

CHECK TO SEE IF DESIRED ACCURACY IS ATTAINED) UK IF NyMbgR OF
ITERATIONS HAS EXCEEDED LIMIT

DINEs(MAX DIFF LE,EPSTLON),OR,(NUMB ITENRATIONS,GI,MAK ITERATIONS)
1fF (,NVT, UINE) GO TO &g

TRACE 125 (.)

e AN Lo wie e b




o 2 D W U O Gende B o il 354

A G S0 bt b i 48+

TRACE 25 (vAX DIFF)

KLUDGY
LYF(MUQQ'xrsnarxons,sr,mnx ITEKATIUNS INUNB | TEKATIONSEMAK

ALL DONE “AIN LUQP
RETURN
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APPENDIX C: The three-dimensional dam problem - implementation 1.

MASTER ECALPAL:

“COMMON /nwAr/utsz.sz)

COMMON 71SCi/ IPLANES: XPOINTS: YPOINTS, !FPO!NTS¢ XB8POINTS
COMMON /1SCA/ YRPOINTS, YLPOINTS, DAMHEIGMT, DAMFACE, DAMRSIDE
COMMON /1SCa/ DAMLBACK, OAMRBACK, DAMLFSIDE, DAMLBSIOE

COMMON /1SCA/ DAMMAXITERS,; 30TTOMMAXITERS; NUMBITERS, NUMBOT

T};:nrsseg 7PLANES, XPOINTS: YPOINTS: XFPOINYS, XBPOINTS
INTEGER YRPOINTS, YLPOINTS, DAMHEIGHT, DAMFACE, DAMRSIDE

INTEGER DAMLBACK, DAMRBACK, DAMLFSIDE, DAMLBSIDE
INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS

REAL DAMEPSILON, BOTTOMEPSILONs OMEGA: MAXDIEF

COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF
INTEGER VI(32)

REAL VR(SZ)

_EQUIVALENCE (V1(1):22ZPLANES) f{VR(1)DANEPSILON)

~ PAUSE 99

__ READ(2,100) DAMHEIGHT, DAMLFSIDE, DAMLBSIDE, DAMLBACK, DAMRBACK

1F(DAMHEIGHT LE, 0) PAUSE 00
READ(2,110) MAXITERS, EPSILON
DAMEPSIILLON = EPSILON

 _BOTTOMEPSILON = EPSILON _ , -

DAMMAXITERS = MAXITERS

BOTTOMMAXITERS s MAXITERS

NUMBITERS = 1|

. OMEGA = 1.8 o

IPLANES = DAMHEIGHT + |

DAMFACE = DAMLBACK ¢ DAMRBACK
DAMRSIDE = DAMLFSIDE + DAMLASIDE
XPCINYS = DAMRSIDE ¢ 1

XFPOINTS = DAMLFSIDE ¢+ i

__XBPOINTS s DAMLBSIDE

YRPOINTS = DAMRBACK ¢ 2
YLPOINTS = DAMLBACK+1

YPOINTS = YRPOINTS ¢ Y_POINTS
WRITE(6,120) DAMHEIGHT, DAMLFSIDE, NAMLASIDE, DAMLBACK, DAMRBACK
CALL DAPTO IV(VI,4H41SCA,0)

CALL DAPTD ES(DAMEPSILON,3HRSCA,0)
CALL DAPTD ES(BOTYOMEPSILON,4HRSCA,1)
CALL DAPTYO ES(OMEGA,4HRSCA,2)

Tue YiMe nlT perinp 1s SET TO 600 SECONDS

CALL DAPGO(THLAPLACE, 800)

CALL DAPFROY FVI(VR,4HMRSCA,0)

CALL DAPFROY IV(V1,4HISCA,0)
WRITE(S,130) NUMRITERS, NUMAOT: MAXDIFF

o e

3
3
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110
126

130

140
150

170
160

CALL DAPFROM EM(H.‘HRMAT&EZ!}KO}})_” .

00 40 1 = i,NI . A

- 46:100) &ﬂJ_LLJhJ!% P S S S S
CONTINUE

T_@0T0 18 .- . iR ool .

00 50 U = 1 NJ

v .= WRITE u;lum & e e el

DO 50 Kk = ¢, NK
.- K- » NKeKKel
CALL DAPFROV EM(W, QHRM‘T.S?HK'!))

_ . WMRITE (8,140) 4u¢tu;_}4_x-1.nt_;__ el

CONTINUE
DO&QI- ‘.Nl
WRITE (6,170) I
DO 60 Kx=miNK
KaNK=KK+1

CALL DAPFROM. EM(W SHRMATY,32¢4(K»1))

T TTWRITE (6,180) (W(1,J)sJuisNJ)
80 .

CONTINUE

GOTO 10 .
FORMAT(510) -
FORMAT(10, EQ.O)
FORMAT( QHIWEIGHY w,15,
122H DAM LEFT FRONT SIDE =,15,20HDAM LEFT BACK SIDE 2,15,
212K LEFT BACK =,159,12HRIGNT BACK ®»,15,//)

FORMAT (234 NUMBER OF ITERATIONS =,15,

194 NUMBOT =,15,20HMAXIMUM DJFFERENCE ®,E13,6)

FORMAT(IN ,9E13,6)

FORMAT(///731H FOR PLANE ,13)

FORMAT(///11H FOR SIDE ,I3)

FORMAT(///11H FOR FACE ,13)

END




e START OF DAPwFORTRAN SECTION
£
- ﬁsueaourtwe_lo CALL.QTHEE-SUQROUTlNES
. SUBROUTINE LAPLACE
COMMON /18CA/ IPLANES: XPOINTS,; YPOINTS, AFPOINTS; XBPOINTS
COMMON /1SCA/ YRPOINTS, YLPOINTS, DAMHEIGHT, DAMFACE, oanasxoe
COMMON /#1$Ca/ DAMLBACK, DAMRBACK, DAMLFSIDE, DAMLASIOE
 COMMON /1SCA7 DAMMAXITERS, BOTTOMMAXITERS,; NUMBITERS, NUMBOT
INTEGER 2ZPLANES: XPOINTS:, YPOINTS: XFPOINTS,; XBPOINTS
INTEGER YRPDINTS, YLPOINTS, DAMHEIGHT) DAMFACE, DAMRSIDE
INTEGER DAMLBACK, DAMRBACK, DAMLFSIDE: DAMLARSIDE
_ INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS
" REAL DAMEPSILON, BOYYOMEPSILON: OMEGA:, MAXDIFF
CcOMMON /RSCaA/ DAMEPSILON, BOYYOMEPSILON, OMEGA. MAKD!FF
COMMON /RMAT/Hl,.,28)
COMMON /SUBLMAT/MASKRB( )y MASKMASK(,)
LOGICAL MASKRB, MASKMASK
CALL INIT MaASK
CALL INIT W
CALL INIT BOTTOM PLANE
CALL MAIN LJ0P
RETURN
END

INITIALIZE THE MASKS

SUBROUTINE INIT MASK
COMMON /1SCA/ ZPLANES,; XPOINTS, YPOINTS, XFPOINTS, XBPOINTS

COMMON /1SCA/ YRPOINTS, YLPOINTS, OAMHEIGHT, OAMFACE, DAMRSIDE
COMMON /18CA7 DAMLBACK, DAMRBACK, DAMLFSIDE, OAMLBSIDE
CcOMMON /1SCA/7 DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBODT
INTEGER ZPLANES, XPOINTS, YPOINTS, XFPOINTS, XAPOINTS
INTEGER YRPOINTS: YLPOINTS: OAMHEIGHMT¢ DAMFACE, DAMRSIDE
INTEGER DAMLBACK, DAMRBACK, DAMLFSIDE» DAMLASIDE

INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS

REAL DAYEPSILON, BOTYOMEPSILON, OMZS5As MAXDIFPF

cOMMON /RSCA/ DAMEPSILON, BOYYOMEPSILON, OMEGA, MAXDIFF
COMMON /RMAT/W(,,25)

COMMON /SUBLMAT/MASKRB(:)s MASKMASK(,)

LOGICAL MASKRB, MASKMASK

LOGICAL Y(.)

MASKMASK IS TRUE IN THE AREA OF W(,¢K) WHERE COMPUTATION TAXES PLACE
MASKMASK = ROWS(2,YPNINTS»1) ,AND, COLS(2/XPOINTS=1)

r ] -F‘LSEC
T = ROAS(YRPAINTS, YPOINTS) _AND., COLS{XFPOINTS:, XPOINTS)
YASKMASK(Y) = ,FALSE,

MASKRB IS THE RED/BLACK SCHEME

""ASKRB = ALTC(1) ,LEn, ALTR(Y)
MASKRB( NOT, MASKMASK) = ,FALSE,
TRACE 127 (VERGE(1,0, TRAN(MASKMASK)))
TRACE 127 (MERGE(1,0,TRAN(MASKRE)))
RETURN

END




10

¢

10

INITIALIZE THE W MATRIX T

SUBROUTINE INIT W iE
COMMON /1SCA/ ZPLANES XPOINTSO YPOINTS, lFPOIN'S' lBPOths
__ COMMON 71SCA/ YRPOINTS, YLPOINTS, DAMHEIGMY, DAMFAGCE: DAMRSIOE
COMMON /18Ca/ DAMLBACK, DAMRBACK, DAMLFSIDE, DAMLBSIDE

__COMMON /1SCA/ DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMDOY

INTEGER ZPLANES: XPOINTS, YPOINTS, XFPOINTS, XBPOINTS

INTEGER YRPOINTS, YLPOUINTS: OAMHEIGHT: DAMFACE, DAMRSIDE = _

INTEGER DAMLBACK, DAMRBACK, ODAMLFSIDE: OAMLBSIDE_ L

INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS T

REAL DAMEPSILON, BOTTOMEPSILON:, OMEGA+ MAXDIFF

COMMON /RSCA/ DAMEPSILON,: BOTYOMEPSILON, OMEGAs. MAXDIFE

COMMON /RMAT/HW(,,2%) _ o o . .

COMMON /SUBLMAT/MASKRB(,)s MASKMASK(,) _ i L=

LOGICAL MASKRB, MASKMASK

REAL TEMPS, TEMPSY

TEMPS m DAMHEIGHT # D‘MHE'GHT L] 0.,

DO 10 K = |, ZPLANES

Wloyos) = 0,0 -

" TEMPSY = 1| = (K = §) / EFLOAT(DAMHEIGHY) = =

"Wls1,K) = TEMPS #» TEMPSI ® TEMPSY{

CDNTINUE

RETURN

END L _

INITIALIZE THE BOTTOM Z PLANE (1.E, W(se1))

SUBROUTINE INIT BOTTOM MATRIX

COMMON /1SCA/ ZPLANESs XPOINTS: YPOINTS, XFPOINTS, XB8PQINTS
COMMON /1SCA/ YRPOINTS, YLPOINTS, DAMHEIGHT, DAMFACE, DAMRSIDE:
COMMON /1SCA/ DAMLBACK, DAMRBACK, DAMLFSIDE, DAMLBSIDE
COMMON /1SCA/ DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT
INTEGER ZPLANES, XPOINTS, YPOINTS: XFPOINTS, XBPOINTS
INTEGER YRPOINTS, YLPOINTS, OAMHEIGHT: DAMFACE, DAMRSIDE
INTEGER DAMLBACK, DAMRBACK, DAMLFSIDE: DAMLBSIDE

INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS

REAL DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF

COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, CMEGA: MAXDIFF
COMMON /RMAT/W(,,25)

COMMON /SUB_MAT/MASKRB( )¢ MASKMASK(,)

LOGICAL MASKRB, MASKMASK

REAL 2(,), SAVEW(,), ALPHA, BETA

I.LOGICAL DONE

INTEGER NUMBTIMES

NUMBOT = ©

ALPHA = OMEGA # 0,28

RETA = 1.0 - NMEGA

SAVEW ® W(ys,1)

NUMBOY = NU4B OT + |

ng 45 NJMBTIMES = {,2

MASKRB(MASKVMASK) = ,NOT, MASKRS

Wllso1) m W (%, ,1)

A(YPOINTS»r1) ® W(YPOINTS=2,,1)

71 3 Wloo1) ¢ Wlmp=yl)

1 3 2(%,) % Z(19)

A{MASKRR, 1) = ALPHA « 2 + BETA ¢ W(,,})
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435  CONTINUE
 MAXDIFF & MAX(ARS(SAVENW = W(,,1)))
 DONEs(MAXDIFFLE,BOTTOMEPSILON) ,OR, (NUMBOT,GT,BUTTUMMAXITERS)
_IF (. NDY. Dong) 80T0 40
TRACE 127(Max0!FF. NUMBOT)

T-.  RETURN o
~ _  END L , o ;
ﬁz, U Sl em L . R K
¢ THE MAIN _NOP = PROCESS ALL THE 2 PLANES o o ;
& . o . L , a
SUBROUTINE MAIN LOOP
_ COMMON /18CGA/ ZPLANES: XPOINTS: YPOINTS,; XFPDINYS( XBPOINTS
o ~ COMMON /1SCA/ YRPOINTS, YLPO!NTS- DAMHEIGHT, DAMFACE, DAMRSIDE
== . cOMMON £1S8CaA/ Bgngugclk.bluaatck. OA!LRSIDE; 03&;1;162 . o
_____ COMMON /1SCA/ DAMMAXITERS, BOTTOMMAXITERS; NUMBITERS, Numoot
77T 7 INTEGER ZPLANES: XPOINTS, YPTSM2, YPOINTS, XpPOINTS, XBPOINTS
o _INTEGER YRPOINTS: YLPOINTS; DAMMEIGHT, DAMEAcE, DAMRSIDE
e "INTEGER DAMLBACK, DAMRBACK, DANMLFS]DE, DAULISID‘
o INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS
i REAL DAMEPSILON, BOTYOMEPS]LONy OMEGA: MAXDIPF _
~ cOMMON /RSCA/ DAMEPS!LON. BDYTOMEPS!LON, oneel. MAXDIFF
S50 COMMON JRMATZWE;,28) T
L COMMON /SUBLMAT/MASKRB(,), ﬂASKMASK(.)
- LOG]CAL MASKRB: MASKMASK
REAL SAVEW(,), 2(,), 241(,)
REAL MAXSOFAR, ALPHA, BETA, WIOGRID2, W]IDTHGRID
INTEGER NUMBTIMES, TOPPLANE
_LDGICAL TEMPMASK(,), DONE, WSION(,) _ _
__ _EQUIVALENCE (WSIGN,Z)
ALPHA s OMEGA * (.0 /7 6,0
RETA = 1-0 - QMEGA
¢ ' : _
% WIDTH OF GRID (1,E, ONE UNIT SQUARE) 1S SET To 1,0
NUMBITERS = 0
_ AIDTHGRID = 1,0
WIDGRID2 s WIDTHGRID * WIDTHGRID
YPTSM2 u YPOINTS w 2
TOPPLANE ® 2ZPLANES - |
€
¢ SAVE THE ASKRB FOR LAYER RESTORATION
e .
TEMPMASK = 4ASKRB
¢
€ MAXDIF Is THE MAXIMUM DIFFERENCE BETWEEN SAVEW AND W(/s¢K) AFTER
£ W(,sK) HAS ITS RED (OR BLACKX) VALUES CHANGE (FDR ALL K)
¢
i 5. MAYDIFF = 0.0
¢ NUMBITERS s NUMBITERS *+ 1
: MASKRB = TEVPMASK
Y N3 30 N JMBTIMES = 1,2
ITERATE FROM THE 2ND PLANE TOD THE TOP PLANE

n0 20 X = 2, TNPPLANE
QAVEN | ﬂ(',’)

REVERSE RED/BLACKX FNR SUCCESSIVE PLANES

MASKRB(VMASKYASK) = .NOT. MASKRB
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e cboatah B e et WA Ut .

SuM THE SI1X NEIGHBORS

 SAVEW(1,) ® SHN(SAVEW:2) o
qu:utVPnlNrs.I s suslsaveu.zi
1 = SAVEM(®, ) _
I1 s SAVEA
T1(MASKRB) @& N, ,Ket)
 U(MASKRB) ® W(s)Kei)
PN 4 T &S ) ] —
1 & 2(,¢)
__21¢ NOT _MASKRB) = wNIDQRIDE
1 s 7 ¢ 1t
1.8 2 ¢ 1(9,)

'E B . .
£ . STORE THE AVERAGE OF THE SIX NEJGHSORS IN W ONLY IN THE
€ RED (on BLACK) CELLS , L

AT ALPHA # 2 + BETA * SEANVEN T

- ZLWSIGN) = 0.0
_WIMASKRB,K) = Z

€ FIND THE ¥aXIVUM DIFFERENCE ON THIS PLANE

T MAXSOFAR = MAX(ABS(SAVEW = Z),MASKRB)

T2 7 IP (MAXSOFAR L,GT, MAXODIFF) MAXDIFF s MAXSOFAR

20 - CONTINUE .

L - e < .

¢ REVERSE STATE OF ORIGINAL MASKRB FOR THE 2ND PASS THROUGN
L. THE PLANES

MASKRB(MASKMASK) s _NOT, TEMPMASK
~ CONTINUE
_ OONE = (NUMBITERS,GT.DAMMAXITERS) ,OR,{MAXDIFF,LE,DAMEPSILON)
1F (.NOT. DONE) GOTO 10
vunsnas s TEMPMASK
RETURN
END




COMMON /1SCA/ YRPOINTS, YLPOINTS, DAMMEIGHY, OAMFACE, DAMAgIDE
COMMON /1SCA/ DAMLBACK, DAMABACK, DamLFSIDE, DAMLBSIDE
COMMON /18CA/ DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT i
] INTEGER ZPLANES, XPOINTS, YPOINTS, XFPOINTS, XQPOINTS
' INTEGER YRPOINTS, YLPOINTS, DAMMEIONY: DAMPACE: DAMRS QDS
. INTEGER DAMLBACK, DAMRBACK, DAMLFSIDE, DAMLBSIDE
j INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, TIMES
¢ REAL DAMEPSILON, BOTTOMEPSILON, OMEGA: MAXDIPF
s COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXD]FF
INTEGER V1I(32)
REAL VR(32) _
EQUIVALENCE (VI(1),ZPLANES)s(VR(1),DAMEPSILON)
PAUSE 99
10 READ(2,100) DAMHEIGHTY, OAMLFSIOE, DAMLBSIOE, OAMLBACK, DAMRBACK
IF(DAMMEIGHT LE, 0) PAUSE 00
READ(2,110) MAXITERS, EPSILON, TIMES
DAMEPSILON = EPSILON
BOTTOMEPSILON = EPSILON
DAMMARITERS = MAXITERS
BOTTOMMAXITERS = MAX]ITERS
NUMBITERS ® 1§
OMEGA = 1,0
IPLANES = DAMHEIGHY ¢
DAMFACE = DAMLBACK ¢ DAMRBACK
DAMRSIDE = DAMLFSIDE ¢ DAMLBSIDE
XPOINTS a DAMRSIDE + 1§
XFPOINTS » DAMLFSIDE ¢ |
XBPOINTS = DAMLBSIDE
YRPOINTS s DAMRBACK + 2
YLPOINTS ® DAMLBACKe{
YPOINTS » YRPOINTS ¢ YLPOINTS
WRITE(6,120) DAMHELIGHT, DAMLFSIDE, DAMLBSIDE, DAMLBACK, DAMRBACK
CALL DAPTO IV(VI,4H1SCA,0)
CALL DAPTN ES(DAMEPSILON,8HRSCA,0)
CALL DAPTD ES(BOTTOMEPSILON,dHRSCA,1)
CALL DAPTO ES(OMEGA,dHRSCA.2) T i
CALL DAPTO [S(TIMES,3HRSCA,4)

‘ APPENDIX D: The three-dimensional dam problem - implementation 2. {
’ : !
MASTER ECALPAL f

] ¢ t
g ¢ ;
| COMMON /RMAT/W(32,32) f
COMMON /71SCA/ ZPLANES, XPOINTS, YPOINTS, XFPPOINTS, xQPOINTS g

!

[

[

[E———

a P

¢ TYF TIME oUT PERIOD IS SET TO 600 SECONDS

CALL OAPGO(INLAPLACE, 600)

CALL DAPFROY EV(VR,3WRSCA,0)

CALL OAPFROM IVI(VI,4HISCA,0)
WRITE(S,130) NUMBITERS, NUMBDY, MAXDIFF




WRITE OUY THE W MATRIX, FROM TOP TO B80TYOM PLANE

NK = IPLANES

Nl ®» YPOINTS

NJ 8 XPOINTS

DO 40 X & 3, NK

“RITE (6,1%0) X

CALL ODAPPROM EM(NW,8HRMAT,32¢(Kel))

00 40 1 & §,N!

WRITE (6,180) (W(I J)edmyi,NJ)
CONTINUE

GOT0 10

DO %6 4 = 1, ,NJ

WRITE (6,160) J

N0 %0 ¢ = 1,NK

K 8 Nloxi(e}

CALL DAPFROV EM(W,8HRMAT ,32¢(Kwl))
WRITE (6.,140) (W(laJ)slmi N])
CONTINUE

DO 601 & §i,N!

WwRITE (8,170) !

00 60 xumi,nK

NSNKaKKef

CALL DAPFROM EM{W,4MRMAT,52¢(Kmy))
WRITE (8,189) (W(1,J)eJdui,NJ)
CONTINUE

60Y0 10

FORMAT(S]p)

FORMAT(10, €0.0, 10)

FORMAT( QWIHEIGHT ®,18,

1224 DAM LEFTY FRONT SIDE =a,15,20HDAM LEFT BACK SIDE =,19,
2124 LEFT BACK ®,15,12HRIGHY BACK ®,18,//)
FORMAT(23W NUMBER OF ITERATJIONS =,]s,
19H NUMBOT »,18,204MAXIMUM D]FPFERENCE u,E13,6)
FOGMAT({H ,9E13,6)

EIRUAT( /7711 FOR PLANE .13)

FORMAT( /7711w FOR SIDE ,13)

FORVATL /77014 FOR FACE ,13)

END
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100t

C

OoOMO

DOOO

00 1001 Ks 2,ZPLANESw2s2

comwou /ISCA/ IPLANES, XPOINTS, YPOINTS, XFPOINTS, XBPOINTS
cOMMON I!SCQI YRPOINTSe YLPOINYS, DAMHMEIGHT, DAMFACEs DAMRSIDE
COMMON /1SCA/ DAMLBACK, DAMRBACK, DAMLFSIDE, DAMLBSIDE

COMMON /1SCA/ OAMMAXITERS, BOTTOMMAX]ITERS, NUMBITERS, NUMBOT
INTEGER ZPLANES, XPOINTS, YPOINTS, XFPOINTS, XBPOINTS

INTEGER: YRPBINTS, YLPOINTS: DAMHEIGHY, DAMFACE, DAMRS IDE
INTEGER DAMLBACK, DAMRBACK, DAMLFSIDE, DAMLBSIDE

INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, TIMES

REAL OAMEPSILON, BOTTOMEPSILON, OMEGAs» MAXOIFF, Z(,)

COMMON IGSCAI'DAMEPSILON.‘UOTfQMEPSJLDNn_DMEGAa MAXDIFF, TIMES
COMMON /RMATY/W(,,25%) o

COMMON /SUBLMAT/MASKRET, ), MASKMASK(,)
LOGICAL MASKRS, MISKMASK e
¢aLL INIT MASK

CALL INIT ®

CALL INIT BOTIOM PLANE
eALL MAIN LOOP

T & wEsakY B ~ -f _7 _ o <> -

 WIMASKRB,K) ® u(..xott

WIMASKED,Kel1f & 2
CONTINVE

RETYURN

END

INIYIALIZE THE MASKS

SUBROUTINE INIT MASK

COMMON /1SCA/ IPLANES, XPOINTS, YPOINTS, XFPOINTS, X8POINTS
COM4ON /1SCA7 YRPOINTS: YLPOINTS: DAMMEIGHT, OAMFACE, DAMRSIDE
COMMON /1SCA/ DAMLBACK, DAMRBACK, DAMLFS]DE, DAMLBSIDE

COMVON /1SCA/7 DAMMAXITERS,; BOTTOMMAXITERS, NUMBITERS, NUMBOT
INTEGER ZPLANES, XPOINTS, YPOINTS: XFPOINTS, XBPOINTS

INTEGER YRPOINTS, YLPOINYS; DAMWEIGHY, OAMFACE, DAMRSIDE
INTEGER DAMLBACK, DAMRBACK, DAMLFSIDE, DAMLBSIDE

INTEGER DAMMAXITERS, SUTTOMMAXITERS, NUMRITERS, TIMES

REAL DAMEPSILON, BOTTOMEPSILON, OMEGAs MAXDIFF

CIMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF, waes
COMMAN /RMAT/W(,,25)

COMMON /SUBLMAT/MASKRAIL,), MASKMASK(,)

LtOGICAL MASKRB, WASKMASK

LAGICAL T(,)

MASKMaSK IS TRUE IN THE AREA OF W(,¢yK) WHERE COMPUTATION TAKES PLACE

MASC<MASK @ ROWS(2,YPOINTS=1) ,AND, COLS(2,XPNINTS=~{)

T ® ROWS(YRPOINTS, YPNINTS) ,AND, COLS(XFPOINTS, XPOINTS)
MASKMASK(T) = ,FALSE,

MASKRAR |S THE REN/ALACK SCHEME

“4AS«RB = ALTC(1) ,LEN, ALTR(1)

TP ( NOT,.SWITCH(2)) MASKRBm NOT MASKRSB
TRACE 127 (VERGE(1,2,TRAN(MASKMASK)))
TRACE 127 (VERGE(1,7,TRAN(MASKRRA)))
RETURN

END




CINETIALLIZE - TWE W MA,RA1X

" SUBROODYINE INIT W _ . - -
T COMMON /lSCA/ “IPLANES, XPOINTS, YPOINTSs XFPOINTS, XB8PQDINTS
. COMMON 71ISCA/ YRPOINTS: YLPOINTS, DAVHEIGHT, DAMFACE, DAMRSIDE
COMMON /1SCA/ DAMLBACK, DAMRBACK, OAMLFSIDE, DAMLBSIDE
FOMMON /1SCA/ OAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT
3 3 .+ EGER IPLANES, XPDINTS, YPOINTS, XpPOINTS, XBPOINTS
3 : tN EGER YRPOINTS: YLPOINYS: DAMMEIGHT+ DAMFACE: DAMRSIDE - .o
V:.2%R DAM_LBACK, DAMRBACK, OAMLFSIDE, OAMLBSIDE
,xNYEGER DAMMAXITERS, BOTTOMMAX]TERS, NUMBITERS, TIMES
REA{ DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF, t,)
COMMON._/RSCAZ DAMEPSILON, BOYTOMERSILON; OMEGA, MAXDIFF, TIMES
COMMON /RMAY/W(),2%)
COMMON /SUBLMAT/MASKRB(,), MASKMASK(,)
LOGICAL MASKRB, MASKMASK
REAL. TEMPS, TEMPSH

= TEMPS ®m DAMNEIGHT ¢ DAMHEIGHT v 0,5 ) ) ]
. DD 10 X = 1, Zp_LANES S
. Wle.n) = 0,0 ‘
TEMPSY) w { = (K & () / EFLOAT(DAMHE!GHY)
Wis1,kK) = TEMPS » TEMPSY * TEMPSI -
10 CONTINUVE .
B 00 100! K» 2,ZPLANESw2,2 '
N 1 8 Wiy,K) 4 '
... W(MASKRB,K) = W(,¢Kel) !
) _WIMASKRB,Ke1) »
1003 CONTINUE
WCe o ZPLANES®L) = W{,,ZPLANES)
=< . AETURN.
eND

_SUBRQUTINE INIT BOTTOM MATRIX

COMMON /1SCA/ IPLANES, XPOINTS, YPOINTS, XFPOINTS, XBPOINTS
_COMMON /1SCA/ YRPOINTS: YLPOINTS, DAMHEIGHT, DAVMFACE., DAMRSIDE
¢OMvON /1SCA/ DAMLBACK, DAMRBACK, DAMLFSIDE, DAMLBS IDE

COMMON /1SCA/ DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT
INTEGER 2PLANES, XPOINTS, YPOINTS: XFPOINTS, XBPDINTS

INTEGER YRPOINTS, YLPOINTS: DAMHEIGHY, DAMFACE, DAMKSIDE
INTEGER DAMLBACK, DAMRBACK, OAMLFSIDE, DAMLHSIDE

INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, TIVES

REAL DAMEPSILON, BOTTYOMEPSILON, OMEGA, MAXDIFF

COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON: OMEGA, MAXDIFF, TIMES
COMMON /RMAT/N{,,25)

COMMON /SUBLMAT/MASKRAB(, )y MASKMASK(,)

LOGICAL MASKXRB, MASKMASK

PEAL 2(,)y SAVEW(,), ALPHA, BRETA

LOGICAL DONE

INTEGER NUMRTIMES

|
¢ ]
£ l\ilTi&l:l;E THE BQT;fOM 1 PLANE (1.E, V‘(ul))'_ - - ) ' |
e N i

s

NUMANY = O
ALPHA = QMEGA ¢ N,2%




THE MAIN LOOP = PROCESS ALL THE Z PLANES

RETA = {1 ,0 « OMEGA

SAVEW ® W(,,1)

NUMBOT = NUMB OT ¢

DO 45 NUMBTIMES = 1,2

Wlt,,t) = W(%,,1)

W(YPOINTS, ;:1) ®» W(YPOINTSm2,,{)

Z® Wleel) ¢ Wlop=pt)

Z m I(e,) % 2(,¢)

W(MASKRB ,AND MASKMASK,1) @ ALPMA ¢ Z ¢ BETA *» W(,,1)
MASKRA = ,NOT, MASKRE
CONTINUE

MAXDIFF u MAX(ABS({SAVEW & W(,21))) o o
DONEm(MAXDIFF,LE,.BOTTOMEPSILON),OR, (NUMBOT ,GE,BOTTOMMAXITERS)
1F ( NOT, DONE) GOTD 40

TYRACE 127(MAXDIFF, NUMBOT)

RETURN
END

SUBROUTINE MAIN LOOP
COMMON /ISCA/ IPLANES, XPOINTS, YPOINTS, XAFPOINTS,; X8POINTS
COMMON /1SCA/ YRPOINTS) YLPOINTS, DAMHEIGHT, DAMFACE, DAMRSIOE
COMMON /1SCA/ DAMLBACK, DAMRBACK, DAMLFSIOE, DAMLBSIDE

COMMON /1SCA/ DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBQT
INTEGER ZPLANES, XPOINTS, YPTSM2, YPNINTS, XFPOINTS, XBPOINTS
INTEGER YRPOINTS, YLPOINYS, DAMMEIGHYs DAMFACE,; DAVRSIDE
INTEGER DAMLAACK, DAMRBACK, DAMLFSIOE: OAMLSSIDE

INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMRITERS, TIMES

REA; DAMEPSILON, BOTTOMEPSILON, OMEGA: MAXDIFF

COMMON /RSCA/ DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF, TIVES
COMMON /RMAT/W(,:25) )

COMJON /SUBLMAT/MASKRAB(,)y MASKMASK(,)

COMVON /WORK/ Z,WK

LOGICAL MASKRB, MASKMASK

REAL SAVEW(:)e 2Cr)s L3¢a)e WKPLlo)y WK(,), MAXD{,)

REAL “AXSOFARs ALPHA, BETA: WIDGRID2, WIDTHGRID

INTEGER NUMBTIMES, TOPPLANE

LOGICAL TEMPMASK(,), DONE, WSIGN(,), TEST, NOTTEST

EQAUIVALENCE (WSIGN:Z)s (Z4Z8)r (WK WKPL)

ALPHA & OMEGA w (1,0 7 6,0
RETA = {,0 - OMEGA

WIDTH NF GRID (I,E. ONE UNIT SNUARE) 1S SET T0 1,0

NUMATITERS = @

WIDTHGRID ® {,0

WIDGRID2 & WIDTHGRID « WIDTHWGRID
TOPPLANE = ZPLANES =




- O

NOOD

20
¢
C
c

TEST = TIMES ,EQ, |
NOTTEST = NOT, TEST
ITIMES ® TIMES

MAXD = 0,0

ALTER ALL THE 9DD NUBERED PLANES!
ke = |
D0 22 K = 2,TOPPLANE, 2
SAVEW ® W(,,key)
WK = Wi,y,K)
w“t', = SHN("K'Z’
WK(YPOINTS,) = SHS(AK,2)
28 K ¢ Wl(wpw)
7 8 (2(4,)0Z (s )eWKIMERGE(W! o1 KM2) ¢ W( s ¢K*2) MASKRB)=WIUGR]ID2)eALPH
Z(WSIGN) = 0,0
WI{MASKMASK ,ke¢i1) ® 2
1P (NOTTESY) 607D 20
71 = ABS(SAVEWs2)
MAXD(Z21,GTY.MAXD) = 21
KM2 = K

ALTER ALL THE EVEN NUMBERED PLANES!
D0 21 K = 2,TOPPLANE,2
SAVEW = W(,,K)
WKPL = Wi,,Kel)
WKP1(gs) = SHN(WKPE,2)
WKP{(YPOINTS,) = SHS(WKP1,2)
7 8 WKPL ¢ WKPti(=,w)
28 (Z(9,)02(s¢)+WKPLOMERGE(W( ¢ o K*3),W(eoK=1) MASKRB)I~wW]IDGRID2)®AL
Z(WSIGN) = 0,0
WIMASKMASK ,X) = 2
IF (NOTTYEST) GOTO 21
71 = ABS({SAVEWaZ)
MAXD(21,6T.MAXD) = 21
CONTINUE

ITIVES = [TIMESey

IF (ITIMES,GT,1) GOTO 2
IF (ITIMES.EQ,0) GOTO 3
TEST = ,TRUE.

NOTTEST = ,FALSE,

G0Tn 2

NUMRITERS = NUMBITERS ¢ TIMES
MAXDIFF =& MAX(MAXD,YASKMASK)
1F (MAXDIFF _ LT, DAEPSILON) GNTO 4

IF (NUMQITERS,LT,.DAVMMAX]ITERS) GOTO
RET'IRN
FND

-~
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